Computational Analysis of Intra-Ventricular Flow Pattern Under Partial and Full Support of BJUT-II VAD

نویسندگان

  • Qi Zhang
  • Bin Gao
  • Yu Chang
چکیده

BACKGROUND Partial support, as a novel support mode, has been widely applied in clinical practice and widely studied. However, the precise mechanism of partial support of LVAD in the intra-ventricular flow pattern is unclear. MATERIAL AND METHODS In this study, a patient-specific left ventricular geometric model was reconstructed based on CT data. The intra-ventricular flow pattern under 3 simulated conditions - "heart failure", "partial support", and "full support" - were simulated by using fluid-structure interaction (FSI). The blood flow pattern, wall shear stress (WSS), time-average wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated to evaluate the hemodynamic effects. RESULTS The results demonstrate that the intra-ventricular flow pattern is significantly changed by the support level of BJUT-II VAD. The intra-ventricular vortex was enhanced under partial support and was eliminated under full support, and the high OSI and RRT regions changed from the septum wall to the cardiac apex. CONCLUSIONS In brief, the support level of the BJUT-II VAD has significant effects on the intra-ventricular flow pattern. The partial support mode of BJUT-II VAD can enhance the intra-ventricular vortex, while the distribution of high OSI and RRT moved from the septum wall to the cardiac apex. Hence, the partial support mode of BJUT-II VAD can provide more benefit for intra-ventricular flow pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study

BACKGROUND BJUT-II VAD is a novel left ventricular assist device (LVADs), directly implanted into the ascending aorta. The pulsatile support mode is proposed to achieve better unloading performance than constant speed mode. However, the hemodynamic effects of this support mode on the aorta are still unclear. The aim of this study was to clarify the hemodynamic effects BJUT-II VAD under pulsatil...

متن کامل

Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study

BACKGROUND The BJUT-II VAD is a novel left ventricular assist device (LVAD), which is thought to have significant effects on the characteristics of aortic swirling flow. However, the precise mechanism of the rotational direction of BJTU-II VAD in the aortic swirling flow is unclear. MATERIAL AND METHODS A patient-specific aortic geometric model was reconstructed based on the CT data. Three pump...

متن کامل

The effect of captopril on the performance of the control strategies of BJUT-II VAD

BACKGROUND With the development of left ventricular assist device (LVAD), the long-term support has been paid more attention by various researchers. According to previous researches, the combination of LVAD and pharmacological therapy can significantly improve the heart rate recovery and survival rate of patient. However, the effect of pharmacological therapy on the cardiovascular hemodynamic s...

متن کامل

Time Domain Analysis of the Ventilation around the Partial Immersed Propeller Using Sliding Mesh Method

In this paper a computational method is presented for predicting the unsteady hydrodynamic forces acting on partial immersed propeller (SPP). In order to simulate the unsteady viscous flow around a SPP, a Reynolds-Averaged Navier–Stokes (RANS) solver is used. The time-accurate calculations are made by applying the sliding mesh method. Structured and unstructured mesh techniques are used. ...

متن کامل

Passive control of a biventricular assist device with compliant inflow cannulae.

Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017